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ABSTRACT

We consider the inverse problem of reconstructing the spatial layout of a place, a home
floorplan for example, from a user’s movements inside that layout. Direct inversion
is ill-posed since many floorplans can explain the same movement trajectories. We
adopt a diffusion-based posterior sampler to generate layouts consistent with the
measurements. While active research is in progress on generative inverse solvers,
we find that the forward operator in our problem poses new challenges. The path
planning process inside a floorplan is a non-invertible, non-differentiable function, and
causes instability while optimizing using the likelihood score. We break-away from
existing approaches and reformulate the likelihood score in a smoother embedding
space. The embedding space is trained with a contrastive loss which brings compatible
floorplans and trajectories close to each other, while pushing mismatched pairs far
apart. We show that a surrogate form of the likelihood score in this embedding space
is a valid approximation of the true likelihood score, making it possible to steer the
denoising process towards the posterior. Across extensive experiments, our model
CoGuide produces more consistent floorplans from trajectories, and is more robust
than differentiable-planner baselines and guided-diffusion methods.

1 INTRODUCTION

Inverse problems (IP) seek to recover unknown signals from indirect, partial, and often noisy measurements.
The unknown signal x∈Rm and the measurement y∈Rl are related via a forward process y=A(x,n),
whereA :Rm→Rl is a forward operator andn denotes the measurement noise. The objective is to estimate
x when given only the observation y, that is, to construct a suitable inverse mapA† such that x←A†(y).

The fundamental challenge in inverse problems is ill-posedness Hadamard & Morse (1953) which neces-
sitates the use of structural priors. Past work has made remarkable progress using insightful observations
on the nature of x, leading to hand-crafted priors like sparsity, total variation, etc. Engl et al. (1996). These
priors make optimization tractable (e.g., maximum a posteriori) but often underfit complex structure and
need careful tuning to balance fidelity and regularization. In recent years, diffusion models Sohl-Dickstein
et al. (2015); Song et al. (2020b); Ho et al. (2020) have become a powerful line of attack since they can
extract priors from large datasets, and use the prior to sample from the posterior distribution Zheng et al.
(2025); Chung et al. (2022); Song et al. (2023). Active progress is being made along the axis of operator
complexity—starting from linear and non-linear operators, and going into non-differentiable, partially ob-
servable, and even blind functions. This paper brings forth a reasonably challenging (path-planning) operator,
motivated by a practical application. Let us present the application first and then shed light on the operator.

Consider a user walking around in her home for a few minutes. Using some sensor, e.g., a smartphone,
the user’s trajectory has been recorded. This trajectory is a sequence of location measurements inside
the home, y=[y1,y2,...yn], along which the user has walked. We ask, given this trajectory measurement,
is it possible to infer the floorplan x of the home, where floorplan is the dimensions and layouts of the
walls in the home. Observe that this is a spatial inverse problem, modeled as y=A(x,n), because the
way the human user walks, y, is indeed a function of the layout of the home x. This function is theA(.)
operator, a policy in the user’s brain that plans the path from point A to point B, for a given floorplan
x. This path-planner is complex—it models for factors such as distance walked, collision with walls and
furniture, time to walk, number of turns, etc. Optimizations with such functions inherit this complexity
since tiny changes in the floorplan—say a small hole in one wall—can drastically change the planned
path. Hence, A(.) is in the regime of non-linear, non-differentiable, and partially observable operators,
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presenting a relatively new question (to the best of our knowledge) to diffusion-based inverse solvers. This
paper concentrates on this specific problem of inverse floorplan estimation, but shows the potential to
extend the approach to a broader family of spatial inverse problems.

Our key idea follows score-based posterior sampling in which the posterior score∇xlogp(x|y) decom-
poses into a diffusion-learned prior score ∇xlog p(x) and a likelihood score ∇xlog p(y|x) Song et al.
(2020b). The prior term injects structural knowledge about plausible x, while the likelihood term enforces
consistency with the measurement y. Following Diffusion Posterior Sampling (DPS) Chung et al. (2022),
we approximate the likelihood score as ∇x log p(y|x̂0) using Tweedie’s mean estimate x̂0 =E[x0|xt]
Efron (2011). WhenA(.) is known and differentiable with additive n∼N (0,σ2I), the likelihood score
reduces to∇x∥y−A(x̂0)∥22 and provides guidance for the denoising process in diffusion. In our case, the
path planning operatorA(.) is difficult to model and non-smooth, and as we show, various approximations
ofA(.)—even when differentiable—produce poor results due to the instability in optimization.

In light of this, we break-away from convention and project both, floorplans x and trajectory y, into a
common embedding space E, in which the likelihood score assumes a surrogate form:

∇x∥[x̂0]E−[y]E∥22 (1)

where [.]E∈E. We train this embedding space using a contrastive approach Jaiswal et al. (2021); Le-Khac
et al. (2020) that pulls matching ⟨trajectory, floorplan⟩ pairs closer to each other, and pushes away pairs that
are incompatible. In other words, the embedding space implicitly learns theA(.) operator from matching
pairs of floorplan and trajectory data, where the latter is synthetically generated from the former using an
approximateA(.) operator. Importantly, the likelihood term in the embedding space is a smoother function
for optimization and we show that it is a valid surrogate of the original intractable likelihood score.

We train our Diffusion prior using public floorplan datasets; during inference, our method CoGuide
generates floorplans for given (sparse, medium, or dense) trajectories. Results reliably outperform 6
different baselines: 3 that are augmentations of DPS with path-planners Yonetani et al. (2021); Kirilenko
et al. (2023); Liu et al. (2024), 2 that are established inverse solvers Zhu et al. (2023); Wang et al. (2024),
and 1 classifier free guidance (CFG) diffusion model Dhariwal & Nichol (2021) that (over)fits to the
joint distribution of trajectories and floorplans. We believe CoGuide has potential beyond this specific
application of floorplan inference; we discuss early thoughts on generalization and follow-on research
directions to leverage contrastive learning in diffusion-based inverse solvers.

2 PRELIMINARIES

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020a;b) are a class of
generative models capable of producing high-quality samples across a wide range of domains, including
images Dhariwal & Nichol (2021), audio Kong et al. (2020); Liu et al. (2023), video Ho et al. (2022),
and 3D data Luo & Hu (2021); Poole et al. (2022). These models define generation as the reversal of
a forward noising process, formalized using a stochastic differential equation (SDE).

dxt=f(xt,t)dt+g(t)dwt, (2)

where xt∈Rd is the state at time t∈ [0,T ], f(xt,t) is the drift, g(t) is the diffusion coefficient, and wt

is a standard Brownian motion (Wiener process). Starting from clean data x0∼pdata, this forward process
gradually corrupts the signal so that xT ∼N (0,I). The associated reverse-time SDE, derived by Anderson
(1982), recovers data from noise:

dxt=[f(xt,t)−g(t)2∇xt
logpt(xt)]dt+g(t)dw̃t, (3)

where pt(xt) is the marginal density of xt at time t,∇xtlogpt(xt) is the (time-dependent) score function,
and w̃t is reverse-time Brownian motion.

Inverse Solvers. Diffusion models have also been adapted for inverse problems based on the insight that
one can design a reverse SDE using the posterior score as:

∇xt
logpt(xt|y)︸ ︷︷ ︸

posterior score

=∇xt
logpt(xt)︸ ︷︷ ︸

prior score

+∇xt
logpt(y|xt)︸ ︷︷ ︸

likelihood score

. (4)

Here, the prior score is easy to approximate by a trained diffusion model sθ(xt,t). The likelihood score,
in contrast, is intractable as y depends only on x0, not directly on xt. In response to this, prior work
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such as Diffusion Posterior Sampling (DPS) Chung et al. (2022) have approximated the likelihood term
as pt(y|xt)≈ p(y|x̂0) where x̂0 := x̂0(xt) = E[x0|xt] is obtained from a single denoising step using
Tweedie’s formula: E[x0|xt]=xt+σ2

t∇xt
logpt(xt)

This formulation has been successfully used to guide diffusion models in solving a variety of inverse
problems across scientific domains Zheng et al. (2025). CoGuide builds on this framework but makes
a necessary departure owing to the challenges posed by the path-planning operator. We briefly discuss
these operators before formulating the floorplan inference inverse problem.

Path Planners as Forward Operators. Unlike typical inverse problems (e.g., deblurring or inpainting),
our measurements y are human-walked trajectories; thus, the forward operatorA encodes a walking policy
through an indoor layout (the floorplan x). Directly modeling human navigation is difficult, so we use
path-planners as a proxies LaValle (2006); Hart et al. (1968); Gammell et al. (2015); Noreen et al. (2016).
Empirical evidence indicates people favor short, direct routes with few turns Tong & Bode (2022) which
aligns well with shortest-path planning. Therefore, the classical A* algorithm Hart et al. (1968) is a good
choice for the forward operator. The floorplan is discretized into a grid graph, and given a start and end
location, A* computes the shortest collision-free path, which we take as the predicted walking trajectory.
To fit into the inverse problem framework, differentiable variants of A*, such as Neural A* Yonetani et al.
(2021), TransPath Kirilenko et al. (2023), NRRT Wang et al. (2020), and Takahashi et al. (2019) are of
interest; they all aim to enable gradient-based learning. Recent diffusion-based planners (DiPPeR Liu
et al. (2024), PbDiff Luo et al. (2024)) further provide differentiable path generation. When inserted as
forward operators, these planners often induce non-smooth objectives where small layout perturbations can
cause large path changes, which in turn hinders convergence in gradient-based optimization. We analyze
causes for this instability next and motivate our embedding-space likelihood surrogate.

3 METHOD

3.1 PROBLEM FORMULATION

Fig. 1 (Left) top row shows an unknown 2D floorplan x∈Rm×n. A user walks in this floorplan (from
point A to a destination point B, then from B to another destination C, and so on) and records a sequence
of location measurements. The union of all these location measurements on a 2D image give us the
trajectories y∈Rm×n as shown in Fig. 1 (Left) bottom row. Given location sensors are noisy, the forward
process is y=A(x)+n where A :Rm×n→Rm×n approximates the human walk using a (generally
nonlinear) A* path-planner, and n models additive Gaussian noise of the location sensor.

Our goal is to utilize the DPS framework (Eq. 5 below) for which we need the likelihood score.

∇xtlogpt(xt|y)≈sθ(xt,t)+∇xtlogpt(y|x̂0) (5)

Approximating the likelihood requires propagating x̂0 through theA(.) operator and using it’s gradient
to steer the diffusion prior sθ(xt,t); doing this stably lies at the heart of our problem.

The stability issues are due to a number of factors, partly depending on the realization of theA(.) operator.
Observe that a path planning algorithm must perform local searches at every intermediate point while
growing a path from the source to the destination. The path grows to a new pixel when that pixel index
minimizes the path cost towards the destination; this argmin operation makes the process non-differentiable.
Differentiable approximations such as Neural A* (NA*) Yonetani et al. (2021), Transpath Kirilenko
et al. (2023), and DiPPeR Liu et al. (2024), mitigate the pixel selection problem, however, the Jacobian
derived from the likelihood score proves to be very sensitive. Said differently, the likelihood score
∇x∥y−A(x)∥22=−2JA(x)⊤(y−A(x)) contains the Jacobian JA(x) and ∥JA(x)∥ is large. Intuitively,
this happens because the path chosen by the planner is immune to most pixels in the floorplan; however,
if a few pixels change slightly, then the new chosen path can be dramatically different.

To visualize this effect, the top row of Fig. 1 (Left) shows paths from different path planners on a floorplan
with fixed start and end locations (note that NA* outputs all the visited pixels called histories to remain
differentiable). The bottom row is a slightly different floorplan where three small doors have been
introduced in each of the lower vertical walls. These door pixels prompted the planners to significantly
change their paths, indicating a highly non-smoothA(·). Steering the diffusion prior sθ(xt,t) with such
a non-smooth guidance from the∇xt

logpt(y|x̂0) is unstable. Lastly, these planners are generally trained
on binary floorplans (black walls and white empty space) and must cope with continuous-valued inputs
(gray pixels) during the reverse diffusion process.
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Figure 1: (Left) Example floorplan x and measured human-walked trajectory y. (Right) Paths chosen by A*, Neural
A*, TransPath, and DiPPeR from the same start and end locations (“s” and “e”). The bottom row is a slight change
from the top row, prompting a large change in path selection.

3.2 GUIDANCE THROUGH CONTRASTIVE LEARNING

Given the complexity in harnessing differentiable path-planning operators, we side-step the issue entirely.
Instead, we propose to design a surrogate for the likelihood score in a learned embedding space E⊂Rd
that is smooth (Lipschitz, without discontinuities) and aligned (compatible floorplan–trajectory pairs map
nearby, mismatched pairs far apart). We expect that operating in such a space will stabilize the gradients
of the likelihood surrogate, making the guidance to the denoiser smoother. Of course, we need to ensure
that this new likelihood score from the embedding space is still a valid approximation for the original
likelihood score∇xtlogpt(y|x̂0).

We construct the space E using two encoders fφ (for floorplans), and gψ (for trajectories):

fφ : X→E, x 7→ [x]E=fφ(x), gψ : Y→E, y 7→ [y]E=gψ(y). (6)

where x∈X and y∈Y such that ∥fφ(x)∥2=∥gψ(y)∥2=1. We then use these encoders to define the
likelihood surrogate for a pair of inputs (x,y) in the form of an un-normalized distribution:

π(y|x)∝exp(⟨fφ(x),gψ(y)⟩/τ) (7)

where, ⟨.,.⟩ denotes an inner product, and temperature τ >0 controls the concentration of this distribution
on the unit-hypersphere in Rd. Intuitively, when this embedding space is learned correctly, larger inner
products should correspond to higher pairwise compatibility and thus higher likelihood.

To achieve this, we train fφandgψ contrastively using an InfoNCE-style loss function Le-Khac et al.
(2020); Oord et al. (2018). This approach naturally organizes the embedding space by pulling matched
pairs together while pushing unmatched pairs apart Wang & Isola (2020).

Contrastive similarity as a likelihood surrogate. To see why this is a valid approach to approximating
the true likelihood, we note that InfoNCE links contrastive learning to density estimation. Following
Contrastive Predictive Coding Oord et al. (2018) we observe that the optimal contrastive classifier recovers
a likelihood ratio, i.e., its logit approximates logp(y|x)−logp(y) up to an additive constant. That is, when
the InfoNCE loss attains its optimum, we get

exp(⟨fφ(x),gψ(y)⟩/τ)∝
p(y|x)
p(y)

=⇒ 1

τ
⟨fφ(x),gψ(y)⟩=logp(y|x)−logp(y)+C

where C is a constant independent of x. Taking gradients with respect to x exactly recovers the likelihood
score on the right-hand side i.e., 1

τ∇x⟨fφ(x), gψ(y)⟩=∇x log p(y|x). Therefore, we substitute this
surrogate likelihood into Eq. 5) along with the DPS approximation which gives,

∇xtlogpt(xt|y)≈sθ(xt,t)+
1

τ
∇xt⟨fφ(x̂0(xt)),gψ(y)⟩

=sθ(xt,t)−
1

2τ
∇xt

∥∥fφ(x̂0(xt))−gψ(y)
∥∥2
2
. (8)
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The second equality is valid since unit-norm embeddings satisfy ⟨u,v⟩=1− 1
2∥u−v∥

2
2. Therefore, the

contrastive guidance admits an equivalent squared-distance form. On the whole, since fφ(·) and gψ(·)
are smooth, the resulting gradients of ∥fφ(x̂0(xt))− gψ(y)∥22 are stable, steadily steering the reverse
diffusion toward floorplans whose embeddings are compatible with the measured trajectory. We extend
this connection from InfoNCE to supervised, multi-positive contrastive learning Khosla et al. (2020); this is
natural in our setting since several compatible trajectories can be synthesized from a single floorplan. This
modification maintains the validity of the likelihood surrogate during inference as explained in Appendix A.

Contrastive Loss Functions. We train the encoders fφ and gψ with a symmetric supervised contrastive
objective. In this setting, let p+(x,y) denote the distribution of matched (positive) floorplan–trajectory
pairs, and p(x), p(y) be the marginals used to draw negatives. The expectations below are estimated with
in-batch negatives (and multi-positives when available).

Lf→t=−E(x,y)∼p+log
exp

(
⟨fφ(x),gψ(y)⟩/τ

)
exp

(
⟨fφ(x),gψ(y)⟩/τ

)
+Ey−∼p(y)

[
exp

(
⟨fφ(x),gψ(y−)⟩/τ

)] . (9)

Here the floorplan x acts as the anchor, and the objective pulls the matching trajectory y close to fφ(x)
while pushing away non-matching trajectories y−∼ p(y). This aligns trajectories around the correct
floorplan anchor and shapes a locally smooth neighborhood in E.

Conversely, we anchor on the trajectory y and attract the matching floorplan x while repelling
non-matching floorplans x− ∼ p(x). This complements the floorplan-anchored view and provides
bi-directional consistency of the embedding space

Lt→f=−E(x,y)∼p+log
exp

(
⟨gψ(y),fφ(x)⟩/τ

)
exp

(
⟨gψ(y),fφ(x)⟩/τ

)
+Ex−∼p(x)

[
exp

(
⟨gψ(y),fφ(x−)⟩/τ

)] . (10)

Adding Alignment Losses. To improve performance, we train the contrastive model with the
symmetric losses in Eq. 9, 10 along with an additional alignment loss that further pull each matched
floorplan–trajectory pair closer in the embedding space.

Lalign =E(x,y)∼p+∥gψ(y)−fφ(x)∥22 (11)

Figure 2: t-SNE embeddings from CoGuide for 3
floorplans (solid green) and two perturbed variants
(solid orange/blue). Trajectories from these floorplans
are shown as hollow shapes; larger hollow markers
indicate higher trajectory density.

While the loss Lcontra separates positives from in-batch
negatives, the alignment term primarily tightens each
true pair by shrinking the intra-positive L2 distance. To
avoid hindering learning in early epochs, we start with
only Lf→t andLt→f and slowly increase the alignment
weight after a few epochs. This schedule gives cleaner
clusters in the embedding space and better results in
practice. CoGuide’s final contrastive loss function can
now be expressed as:

Lcontra=λLf→t+(1−λ)Lt→f+λalignLalign

where λ∈ [0,1] and λalign>0 are hyperparameters.

Fig. 2 visualizes the t-SNE plot of the learned embed-
dings. Although the figure and legends are dense, they
shed valuable light on how the E space is organized. The
plot is for 3 different floorplans and trajectories, but let’s
focus only on the bottom left corner, the region with
circles. Two observations are of interest: (1) The green
solid circle is a specific floorplan x and the orange and
blue solid circles are slight variants of x, denoted x+δ1 and x+δ2. Observe these variations are nearby
while other floorplans (solid stars and solid squares) are far away. (2) The green circles are trajectories
from the green floorplan (the same is true for other colors), and a larger radius indicates denser trajectories.
Observe that trajectories are embedded near their matching floorplan, and sparser trajectories are further
away from the floorplan (towards the center). This is expected because sparse trajectories imply more ill-
posed behavior since many other floorplans can also explain those trajectories. We expect this organization
to generate smoother likelihood scores, serving the original purpose of CoGuide.
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Algorithm 1 CoGuide: Contrastive Likelihood Guidance for Spatial Inverse Problems
Require: T timesteps; trajectory y; step sizes {ζt}; Adam base LR η0, γ1,γ2, ε, noise scales {σ̃t};

diffusion params {αt,ᾱt}; score sθ; encoders fφ,gψ; temperature τ , intersection weight λint.
Require: Annealing & gating: start ts, end te, min-LR ρ, stop tstop

1: xT ∼N (0,I); Adam: m←0, v←0, k←0 ▷ initialization
2: for t=T−1 down to 0 do

3:

DDIM: ŝ←sθ(xt,t); x̂0←ᾱ
−1/2
t

(
xt+(1−ᾱt)ŝ

)
; ▷ score model and one step denoising

ϵ̂← xt−
√
ᾱtx̂0√

1−ᾱt
; z∼N (0,I). σt← σ̃t.

x′
t−1←

√
ᾱt−1x̂0+

√
1−ᾱt−1−σ2

t ϵ̂+σtz. ▷ ddim step

4: CoGuide: Gt←−
1

2τ
∇xt∥gψ(y)−fφ(x̂0)∥22+λint∥y⊙(1−x̂0)∥1. ▷ contrastive likelihood score

5:
Adam: ηt←AnnealLR(η0,ρ,t;ts,te); if tstop set and t≥tstop then ηt←0.
xt−1←Adam

(
x′
t−1,Gt; ηt,γ1,γ2,ε

)
. (Optional SGD: xt−1←x′

t−1+ζtGt.)

6: return x̂0

3.3 IMPROVING DIFFUSION INFERENCE

Intersection Penalty. We found it helpful to penalize intersections between walls and trajectories during
inference. We add an intersection penalty Lintersect=∥y⊙(1−x̂0)∥1 which counts (up to a constant scale)
the total number of pixels where a trajectory overlaps a wall. Lowering this term during reverse diffusion
steers updates toward wall–trajectory compatibility, yielding floorplans that respect the observed paths y.

Using Adam with DDIM. Once the likelihood surrogate and intersection penalty are plugged in, CoGuide
performs gradient-based optimization over a nonconvex posterior via DDIM Song et al. (2020a) or DDPM
Ho et al. (2020). Since DDIM uses fewer reverse steps than DDPM, plain GD/SGD can under-integrate our
embedding-based gradients, leading to poor convergence. We therefore replace GD/SGD inside each DDIM
step with Adam Kingma & Ba (2017). This supplements the reverse diffusion process with higher-order
information about the optimization landscape and improves convergence. Algorithm 1 reflects this change
by using Adam in the guidance step. To control guidance strength over the short DDIM schedule, we use a
brief cosine annealing (denoted as AnnealLR in Algorithm 1) of the learning rate. Before the ramp starts
(for t≤ ts) we keep the rate fixed at ηt=η0; after the ramp ends (for t≥ te) we clamp it to ηmin=ρη0.
During the ramp (ts<t<te) we use:

ηt=ηmin+
1
2(η0−ηmin)

[
1+cos(π t−ts

te−ts )
]
. (12)

Finally, we hard-gate guidance off by setting ηt = 0 for t≥ tstop. This pairing, Adam for robust, per-
coordinate integration and a short cosine ramp with a hard stop, recovers much of the “many-step”
integration that DDPM would provide while preserving DDIM’s speed. In addition, it avoids late-stage
instabilities by letting the diffusion prior refine the sample without additional guidance.

4 EXPERIMENTS AND EVALUATION

Datasets. We use the HouseExpo dataset Tingguang et al. (2019) for all experiments. It contains approx-
imately 35,126 2D floorplans of houses and apartments generated from the SUNCG dataset Song et al.
(2017). We downsample each floorplan to a 64×64 binary image where white pixels represent free space
and black pixels represent walls/obstacles. Downsampling is necessary because path-planners scale poorly
to higher image sizes making diffusion inference slow. We split the dataset into an 80-10-10 for training,
validation, and testing. Next, we generate compatible trajectories on each floorplan using the A* algorithm
by randomly sampling start and goal locations from the open spaces. In addition, we generate trajectories
at three levels of densities; sparse, moderate and dense to simulate how much a user may have walked.
On average, these correspond to 40%,25%, and 10% of the open spaces in the floorplans, respectively.
Including this in the dataset helps in understanding how CoGuide copes with ill-posedness as the number
of measured trajectories decreases.

Metrics. We evaluate the performance of different methods using 2 metrics: (A) Intersection over Union
(IoU) Rezatofighi et al. (2019): This metric measures how well the predicted floorplan overlaps with the
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ground truth. It is computed as the ratio of intersecting free space pixels to the union of all free space pixels:
IoU= |FP∩FP∗|

|FP∪FP∗| where FP and FP∗ are the predicted and true free space pixels, respectively. (B) F1 score
Sokolova & Lapalme (2009): Defined as F1= 2×P×R

P+R , where P is the precision and R is the recall of the
bitmap. P and R are defined based on free space pixels, similar to IoU.

Baselines. We evaluate the performance of CoGuide against 6 competitive baselines: ■ DPS+X: DPS
Chung et al. (2022) based inverse solver with 3 differentiable path-planners A by instantiating X∈
{NeuralA*,TransPath,DiPPeR} Yonetani et al. (2021), Kirilenko et al. (2023), Liu et al. (2024). More
details about the planners are provided in the Appendix D. Briefly, these path-planners use a CNN-
based shortest-path module, a Transformer based path-probability encoder, and a diffusion-based planner,
respectively. ■ DiffPIR Zhu et al. (2023): A plug-and-play image restoration solver that uses a diffusion
model as a denoiser, instead of training a Gaussian denoiser. We follow the default configuration in
https://github.com/yuanzhi-zhu/DiffPIR. Since we do not have a closed form data proximal estimator, we
use an ADAM optimizer to solve the proximal with 10 optimization steps and use a 0.01 learning rate. ■
DMPlug Wang et al. (2024): A recent inverse solver that optimizes the noise seed such that after a DDIM
sampler, the resulting image satisfies the measurement constraint. We follow the default configurations
in https://github.com/sun-umn/DMPlug except we use 100 optimization steps. ■ CFG: Performs Classifier-
free Guidance Dhariwal & Nichol (2021) that combines the unconditional and trajectory-conditioned scores
with a guidance scale that biases sampling toward trajectory-consistent floorplans.

Diffusion and Contrastive Model. Our base diffusion model follows the implementation used in the DPS
Chung et al. (2022). We adapted the contrastive model used in Khosla et al. (2020) based on the specific
needs of this project. We discuss architecture and hyperparameter settings in Appendix C.

4.1 RESULTS

■ Quantitative. Table 1 reports F1/IoU (mean ± std) for three regimes of trajectory density: sparse,
moderate and dense. In the sparse regime, CoGuide attains the best performance, exceeding all baselines,
including CFG. Similarly in the moderate regime, CoGuide again leads surpassing CFG and the DPS
variants. However, in the dense case, CFG is the strongest, with CoGuide showing comparable performance.
Overall, CoGuide consistently outperforms DPS+X, DiffPIR, and DMPlug.

Table 1: Performance across trajectory densities. Each regime reports F1 and IoU (higher is better).

Method Sparse Moderate Dense

F1 IoU F1 IoU F1 IoU

DPS+Neural A⋆ 0.79±0.09 0.67±0.13 0.79±0.09 0.66±0.13 0.79±0.09 0.66±0.12
DPS+TransPath 0.76±0.15 0.64±0.18 0.74±0.15 0.60±0.19 0.72±0.17 0.59±0.20
DPS+DiPPeR 0.77±0.10 0.64±0.13 0.77±0.11 0.64±0.14 0.76±0.11 0.63±0.14
DMPlug 0.31±0.10 0.19±0.08 0.28±0.09 0.17±0.07 0.28±0.08 0.16±0.07
DiffPIR 0.63±0.09 0.47±0.09 0.64±0.08 0.48±0.09 0.65±0.08 0.49±0.08
CFG 0.86±0.06 0.76±0.10 0.93±0.03 0.88±0.05 0.97±0.01 0.95±0.03
CoGuide (Ours) 0.91±0.04 0.84±0.07 0.94±0.03 0.89±0.05 0.95±0.03 0.90±0.06

■ Qualitative. Fig. 3 shows qualitative results of CoGuide and baselines on 6 test floorplans. The
ground truth floorplan is shown in the top row with the measured trajectory y marked in light blue. The
DPS+planner-based methods along with DiffPIR and DMPlug fail to produce valid floorplans that are
consistent with the provided trajectory, often generating artifacts on the converged floorplan. This can be
attributed to the unstable forward operatorsA(.) that get embedded in each of their optimization processes.
It is worth noting that although CFG proves superior in metrics, qualitative results do not always reflect this
fact. CoGuide shows floorplans that are consistent with the trajectory, with fewer visual artifacts. We show
additional results on different floorplans in Appendix B

4.2 ABLATIONS

■ Effect of the Intersection Penalty. As described in section 3.3, we add an intersection penalty to guide
the posterior sampling to improve our results. Table 2 shows the effect of this intersection penalty on the
results. We observe two points: (i) Inclusion of the intersection penalty Lintersect leads to an improvement
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Ground
Truth

DPS +
Neural A*

DPS +
Transpath

DPS +
DiPPeR

DMPlug

DiffPIR

CFG

CoGuide
(Ours)

Figure 3: Qualitative comparison of ground truth floorplans against baselines and CoGuide.

in the evaluation metrics and the qualitative results. (ii) Applying too large of a penalty, however, degrades
the results, as can be seen in the last row when λint=1.5×10−3.

■ Improving convergence with Adam
As discussed in section 3.3, we incorporate the Adam update during the sampling process and compare
against the standard Gradient descent-based update. Results reported in Table 3 shows that employing
Adam consistently outperforms SGD across both DDPM and DDIM.

■ Measurement Noise. In real-world settings, the localization sensors that provide the input trajectories to
CoGuide may be noisy. To model this, we inject Gaussian noise into the trajectory generation process.
We increase the noise standard deviation and compare our performance across various noise levels and
trajectory densities. CoGuideś performance understandably degrades with increasing noise levels as shown
in Fig. 4. The degradation is however graceful, and denser trajectory upholds better performance.
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Table 2: CoGuide performance across intersection weight λint settings.

λint
Sparse Moderate Dense

F1 IoU F1 IoU F1 IoU

0.0 0.88±0.05 0.78±0.08 0.90±0.04 0.82±0.07 0.91±0.04 0.84±0.07
3.0×10−4 0.91±0.04 0.83±0.07 0.93±0.03 0.88±0.05 0.95±0.03 0.90±0.05
7.0×10−4 0.91±0.04 0.84±0.07 0.94±0.03 0.89±0.05 0.95±0.03 0.90±0.06

1.5×10−3 0.91±0.04 0.84±0.07 0.93±0.04 0.88±0.06 0.94±0.05 0.89±0.08

0.00 0.25 0.50 1.00 1.50 2.00 2.50
Noise std. dev. σ

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Io
U

Dense Moderate Sparse

Figure 4: Effect of measurement noise on IoU.

Table 3: F1 and IoU for two optimizers
under DDPM and DDIM samplers.

Sampler Method F1 IoU

DDPM GD 0.92±0.04 0.87±0.07
Adam 0.94±0.03 0.88±0.06

DDIM GD 0.86±0.07 0.76±0.10
Adam 0.92±0.05 0.85±0.08

5 RELATED WORK

Floorplan estimation has been studied extensively for a range of applications including room/graph
reconstruction, layout parsing, and indoor mapping Lee et al. (2017); Gillsjö et al. (2023); Yang et al.
(2023); Zou et al. (2018). Early works include classical and unsupervised pipelines leveraging mobile
sensing and heuristics Shin et al. (2011). Graph-based methods have also been explored Yang et al. (2023);
Hickman & Krolik (2009), modeling spatial relations via polygons, and wireframes.

Vision-based approaches using RGB images remain common and highly effective Lee et al. (2017); Zou
et al. (2018); Zeng et al. (2019); Lv et al. (2021); Yan et al. (2020); Jia et al. (2022). A large body of
work reconstructs floorplans from RGB images or panoramas via corner/edge decoding or Manhattan
layouts Lee et al. (2017); Zou et al. (2018); Lv et al. (2021); Zeng et al. (2019), with extensions to 3D
room layout from a single view Yan et al. (2020); Jia et al. (2022). More recently, diffusion models
have emerged as strong priors for layout synthesis and reconstruction, including constrained or vectorized
floorplan generation Gueze et al. (2023); Shabani et al. (2023); Inoue et al. (2023), leveraging advances in
score-based modeling Ho et al. (2020); Song et al. (2020a); Rombach et al. (2022). While these visual
pipelines are effective when imagery is available, they raise privacy concerns and depend on line-of-sight
and scene illumination. In contrast, trajectories are privacy-preserving, and can be easily collected during
routine motion using built-in IMU sensors on mobile devices.

Other modalities have also been explored beyond vision, including acoustics Zhou et al. (2017), magnetics
Luo et al. (2017), RF Peng et al. (2018), radar Hickman & Krolik (2009). While effective in specific
settings (e.g., BatMapper Zhou et al. (2017)), many require specialized hardware or calibrated infrastructure,
whereas IMU-based trajectories are easy to obtain. Walk2map Mura et al. (2021) is the most relevant to
our work, but it is designed for single-room layouts and does not have any generative capabilities.

6 FOLLOW-ON WORK AND CONCLUSION

■ Spatial Inverse Problems: This paper focused on a specific floorplan estimation problem, however, the
notion of contrastive guidance should lend itself to a broader family of non-differentiableA operators. We
intend to investigate what family of operators can benefit, and conversely, how can the contrastive guidance
be improved to broaden that family of operators. Along these lines, newer applications are also of interest.
For instance, can city maps be synthesized based on GPS trajectories of vehicles? Can discrete molecular
structure be synthesized from measured properties of molecules? Can Internet topologies be derived
based on streaming packet analytics? ■ Towards Realism: Even in our specific floorplan application,
there is room for improvement. The standard floorplan dataset (HouseExpo) does not include furniture.
Incorporating furniture into the environment is a practical extension, if such a dataset is available. ■ Blind
Inverse Problems: That the contrastive loss is almost agnostic to theA(.) operator may enable approaches
to blind inverse problems, if we can generate measurement y from known x’s. If partial information is
available aboutA(.), could that be adequate to design a good embedding space? We believe CoGuide
could initiate conversation along all these branches, inviting a range of follow-on research and exploration.
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7 REPRODUCIBILITY STATEMENT

All model implementations, training scripts, and inference pipelines are open-sourced and will be made
available in our anonymous GitHub repository. This includes instructions for environment setup, depen-
dencies, and reproducible random seeds. The datasets used in our experiments are publicly available. We
provide detailed descriptions of the dataset in Sec. 4. Hyperparameters, training schedules, and evaluation
pipelines are described in Sec. 4, with further details in the Appendix C. Additional information including
code repository can be found at https://coguide.github.io/.
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APPENDIX

1. Theoretical Notes

(a) Likelihood under InfoNCE objective

2. Additional Qualitative Results

(a) Additional floorplans
(b) Sensitivity to trajectory sparsity
(c) Top-5 Nearest Floorplans in the Contrastive Space

3. CoGuide Implementation Details

(a) Diffusion Model Training
(b) Contrastive Model Training
(c) Supervised Contrastive Loss functions

4. Details on Path Planners used in this paper

(a) A*
(b) Neural A*
(c) Transpath
(d) DiPPeR

A LIKELIHOOD UNDER INFONCE OBJECTIVE

CoGuide benefits from the replacement of the likelihood term with a contrastive similarity score from
the InfoNCE formulation. This relationship was originally shown in Contrastive Predictive Coding Oord
et al. (2018). We include this derivation here for completeness in the context of CoGuide. Consider a
batch of size N with floorplans X̃={xj}Nj=1 and trajectories Ỹ={yj}Nj=1. For a given floorplan xj, we
shuffle the trajectories Ỹ, so that the corresponding positive trajectory yj is placed at position i∈{1,...,N}.
The task is then to identify the correct index i. Let I be the random variable representing the index of the
correct trajectory for floorplan xj and p(y) be the marginal distribution of trajectories. Given a similarity
general score function s(x,y), the InfoNCE assumes a softmax distribution over indices and formulates a
cross-entropy loss. So, the approximate posterior q:

q(I=i |xj,Ỹ)=
exp{s(xj,yi)}∑N
k=1exp{s(xj,yk)}

. (13)

Specifically, in CoGuide, the similarity score function assumes the form s(x,y)=⟨fφ(x),gψ(y)⟩/τ since
we use encoders fφ (for floorplans), and gψ (for trajectories) as described in section 3.2.

Next, we calculate the true optimal posterior p from Bayes’ rule as :

p(I=i |xj,Ỹ)=
p(xj,Ỹ,I=i)∑N
r=1p(xj,Ỹ,I=r)

=
1
N p(yi |xj)

∏
k̸=ip(yk)∑N

r=1
1
N p(yr |xj)

∏
k̸=rp(yk)

=
p(yi |xj)

∏
k̸=ip(yk)∑N

r=1p(yr |xj)
∏
k̸=rp(yk)

=

p(yi |xj)
p(yi)∑N

r=1

p(yr |xj)
p(yr)

.
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Matching q and p requires that the numerators differ only by a multiplicative constant (since softmax is
invariant to shifts). Thus at the InfoNCE optimum,

exp
(
⟨fφ(x),gψ(y)⟩/τ

)
∝ p(y |x)

p(y)

=⇒ 1

τ
⟨fφ(x),gψ(y)⟩∝ logp(y |x)−logp(y)

=⇒ 1

τ
⟨fφ(x),gψ(y)⟩=logp(y |x)−logp(y)+C (14)

where C is independent of x. Taking gradients with respect to x cancels both logp(y) and C, yielding
1

τ
∇x⟨fφ(x),gψ(y)⟩=∇xlogp(y |x). (15)

Therefore, we substitute this surrogate likelihood into Eq. 5) at time-t along with the DPS approximation
which gives,

∇xtlogpt(xt|y)≈sθ(xt,t)+
1

τ
∇xt⟨fφ(x̂0(xt)),gψ(y)⟩

=sθ(xt,t)+
1

τ
∇xt

(
1− 1

2

∥∥fφ(x̂0(xt))−gψ(y)
∥∥2
2

)
.

=sθ(xt,t)−
1

2τ
∇xt

∥∥fφ(x̂0(xt))−gψ(y)
∥∥2
2
. (16)

We replace the inner product with the L2 norm since ∥fφ(x)∥2 = ∥gψ(y)∥2 = 1. This derivation
justifies that the InfoNCE objective ties together contrastive similarity with the true likelihood p(y|x).
On extending this approach to supervised contrastive training, the validity of the likelihood surrogate
∇xt∥fφ(x̂0(xt))−gψ(y)∥22 remains intact. This holds because, during diffusion inference, only a single
measurement of y is provided to the model. Thus, the contrastive objective in this case uses only a
single-positive sample, and therefore, reduces to that of the InfoNCE objective.

B ADDITIONAL QUALITATIVE RESULTS

■Additional Results. We show results from evaluation on additional floorplans in Fig. 5 and 6. We observe
that CoGuide significantly outperforms all inverse-solver baselines while being better or comparable to
CFG.

■ Uncertainty quantification. We eventually imagine a user-in-the-loop system because not all floorplans
are observed with the same number of trajectories; our estimates can vary and should reflect this effect.
We therefore quantify an uncertainty in the predicted floorplan by drawing multiple posterior samples and
computing the variance of its distance transform Strutz (2023) while allowing for small translations.

Fig. 8 shows the uncertainty in the predictions of CoGuide across varying trajectory densities for two
different floorplans. As is expected, increasing trajectories lead to a reduction in the uncertainty, as
highlighted by a low amount of red towards the bottom right of the images. In regions of high uncertainty
(more red), a user in a practical-setting may collect more trajectory measurements in those regions. As
the measurements increase, the uncertainty in the predictions decreases eventually converging to the true
floorplan.

■ Top 5-nearest floorplans in the contrastive embedding space We include figures to show the closest
5 floorplans to the ground truth in the contrastive embedding space. It is evident that the contrastive space
has learned to place semantically similar looking floorplans close-by. This further supports the original
goal of CoGuide. We observe that as sparsity increases, the top-5 retrieved floorplans move away from the
ground truth. This reflects the nature of the contrastive space that was shown in the t-SNE plot in Fig. 2

C COGUIDE IMPLEMENTATION DETAILS

C.1 DIFFUSION MODEL

Inputs and outputs. All models operate on single-channel floorplan images of spatial size 64×64.
The network predicts a single-channel output and is trained to estimate the diffusion noise (i.e., ϵ-
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Ground
Truth

DPS +
Neural A*

DPS +
Transpath

DPS +
DiPPeR

DMPlug

DiffPIR

CFG

CoGuide

Figure 5: Qualitative comparison of ground truth floorplans against baselines.

parameterization). Training was done on NVIDIA RTX3090 GPU with 24GB RAM for around 28
hours.

Backbone topology. We use a U-shaped encoder–decoder with skip connections at every resolution. The
base feature width at the first stage is 128 channels. The network has four resolution stages with channel
multipliers (1,2,3,4) applied to the base width as spatial resolution decreases, yielding encoder widths
(128,256,384,512) and a symmetric decoder. Each resolution stage contains one residual block per scale.
Residual blocks follow the sequence: normalization layer, SiLU nonlinearity, 3×3 convolution, followed
by a second normalization–SiLU–3×3 stack inside the block; a skip projection is included when input and
output widths differ. Spatial downsampling and upsampling are performed inside residual blocks (residual
down/up blocks), keeping the skip topology consistent across scales.

Timestep conditioning. Diffusion timesteps are embedded with sinusoidal features and passed through a
two-layer multilayer perceptron with SiLU activation. The embedding dimensionality equals four times
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Figure 6: Additional qualitative comparison of ground truth floorplans against baselines.

the base feature width (4×128). This vector conditions every residual block through feature-wise affine
modulation (scale and shift applied after normalization). When scale–shift modulation is disabled, the
embedding is added to the block features instead.

Self-attention. Self-attention is inserted at the stage whose spatial size equals 64/16=4 (i.e., after fourfold
downsampling). Attention uses four heads with 64 channels per head. Query, key, and value projections
are computed with 1×1 convolutions over the flattened spatial axis; the dot-product weights are scaled by
1/
√
d for stability, and the attended features are projected back to the model width with a 1×1 convolution.

The same attention configuration is mirrored on the corresponding decoder stage.

Normalization, activation, and regularization. All blocks use the same normalization layer before SiLU
activations. Dropout is disabled (rate =0) throughout the network. Zero-initialized 3×3 convolutions are
used at the end of residual blocks to stabilize early training.
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Figure 7: Variance of Distance Transform across 5 random seeds to quantify uncertainty. Decreasing
uncertainty with increasing trajectory density marked is evident from the reduction in red regions.

Output head. After the final decoder block, a normalization and SiLU are applied, followed by a 3×3
convolution that maps the current feature width back to one channel. No auxiliary heads are used.

Encoder-only and super-resolution variants. For representation studies, we use an encoder-only variant
that shares the same residual and attention layout, terminating in either adaptive average pooling or attention
pooling to produce a compact vector embedding. For conditional super-resolution ablations, a second
(low-resolution) image is bilinearly upsampled to the target size and concatenated with the noisy input
along the channel dimension before entering the first convolution; the rest of the architecture is unchanged.

Optimization and schedule. Unless otherwise noted, we train for a long horizon (on the order of 103
epochs) using AdamW with weight decay 0.05, an initial learning rate of 10−4, gradient–norm clipping at
1.0, and cosine decay to a zero floor following a short warmup of 1–2% of total steps. Exponential moving
averaging of weights (decay 0.999–0.9999) can be enabled for evaluation stability; results are reported
with and without EMA when relevant. Batch size is chosen to saturate device memory; when necessary,
gradient accumulation is used to reach an effective batch size comparable across setups. Dropout within
residual blocks is disabled (rate 0).
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Figure 8: Retrieving floorplans corresponding to the top 5 nearest embeddings to the ground truth floorplan.
The top-1 is always the ground truth itself.

Diffusion hyperparameters. We use a linear variance schedule with T=1000 steps. Training targets are
the additive noise (epsilon–parameterization). The predicted mean follows the standard epsilon formulation,
and the variance is handled inside the diffusion objective with a learned–range parameterization; no
auxiliary output heads are added. Denoised clipping is enabled, dynamic thresholding is disabled, and
timestep rescaling is not used. For sampling, we report both ancestral sampling using the full 1000–step
trajectory and deterministic sampling using a 100–step respaced trajectory.

Tunable knobs. Architectural knobs include: base width (default 128), the four–stage multiplier tuple
(1,2,3,4), number of residual blocks per stage (default one), attention placement (default only at 4×4),
number of attention heads (default four), and head width (default 64). Training knobs include: total
epochs (order of 103), optimizer (AdamW), weight decay (10−2–10−1; default 0.05), initial learning rate
(5×10−5 to 3×10−4; default 10−4), warmup ratio (1–2%), cosine decay floor (zero), gradient–norm
clip (default 1.0), EMA decay (0.999–0.9999), and batch size or effective batch size via accumulation.
Diffusion–process knobs include: number of training steps T (default 1000), schedule type (linear by
default), respacing for sampling (full vs. 100–step DDIM).

C.2 SUPERVISED CONTRASTIVE LEARNING

Encoders and embeddings. Both modalities (floorplan and trajectory) are processed by identical vision
transformers operating at 64×64 resolution with 16×16 patches. The patch stem is adapted to one input
channel. The transformer produces a global token which is mapped to a 256-dimensional space by a
lightweight two-layer projection: linear→ GELU→ linear within 256 dimensions, followed by dropout
(p=0.1), a residual connection from the first linear output, and LayerNorm. The resulting vectors are
ℓ2-normalized prior to similarity computation.

Batch organization and positives. Mini-batches of size 496 are constructed so that each floorplan anchor
is paired with 7 trajectory positives from the same scene, yielding a multi-positive setting. All other
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examples in the batch that do not share the label act as negatives. Similarities are inner products between
unit vectors.

Data transformations. To encourage invariance, random rotations and horizontal/vertical flips are applied
to both modalities. For trajectories, structured dropout removes a uniformly sampled fraction of path pixels
in the range [0.05,0.10] per sample. Augmentations are applied independently across views.

Contrastive objective and temperature. The supervised contrastive term uses a temperature-scaled
log-softmax over all candidates in the batch. The temperature is learned during training, softly constrained
to the interval [0.01,0.15], and updated with a small learning rate (10−4). Unless stated, the contrastive
weight is initially one and may be decayed later (see scheduling).

Cross-modal alignment and directionality. Alongside the symmetric multi-positive objective, we add
a distance-based alignment penalty between matched floorplan–trajectory embeddings to co-locate cor-
responding pairs. A directional coupling that emphasizes trajectory-to-floorplan consistency is included
with half the weight of the main contrastive term. A uniformity regularizer (energy-based) is available but
disabled by default.

Loss scheduling. After an initial phase of 100 epochs, the contrastive weight is optionally reduced linearly
over 30 epochs to a nonzero tail value (e.g., 0.5), then held fixed. This schedule prioritizes discrimination
early and refinement later. Alternative schedules that delay the alignment term use the same ramp length
and maintain a reduced contrastive tail; the discrimination-first schedule is the default.

Optimization and training hyperparameters. Training runs for 1500 epochs with AdamW, weight decay
0.05, and an initial learning rate of 10−4. Gradients are clipped to a global norm of 1.0. The learning
rate uses a short warmup covering 1.5% of total steps, followed by cosine decay to a zero floor. The
temperature parameter is optimized jointly under the same schedule.

Optional stochastic floorplan corruption. For ablations, we considered variance-preserving diffusion-
style corruption applied to floorplan inputs with a small probability and limited diffusion time within a
1000-step schedule. This corruption is disabled in the main experiments to isolate the supervised contrastive
contribution.

Summary. Single-channel inputs for both modalities; shared transformer encoders at 64×64 with 16-pixel
patches; a residual two-layer projection to 256 dimensions with unit-length normalization; multi-positive
supervised contrastive learning with a learned temperature; rotation/flip invariances and mild trajectory
dropout; auxiliary alignment and directional terms with modest weights; and a long-horizon AdamW
optimization with warmup and cosine decay. Training was done on NVIDIA A6000 GPUs with 48GB
RAM for around 12 hours.

C.3 LOSS FUNCTION DESCRIPTIONS

Here, we explicitly state the expressions for the contrastive losses that were used in the implementation of
CoGuide. The losses include a symmetric supervised contrastive loss along with a positives-only alignment
loss. Let fφ(x) be the floorplan encoder and gψ(y) be the trajectory encoder. For each floorplan xi, there
are K matched trajectories {yi,k}Kk=1. Negatives come from other items in the batch.

Floorplan → Trajectory, Lf→t. Anchor: the floorplan embedding gψ(xi). Positives: its K matched
trajectory embeddings fφ(yi,k). The numerator scores a true pair; the denominator sums scores over all
trajectories in the batch. This pulls in the right trajectories and pushes away the rest.

Lf→t=
1

B

B∑
i=1

−
1

K

K∑
k=1

log
exp

(
⟨fφ(xi,k),gψ(yi)⟩

)
B∑
j=1

K∑
k′=1

exp
(
⟨fφ(xi,k),gψ(yi)⟩

)
.

Trajectory → Floorplan, Lt→f . Anchor: the trajectory embedding fφ(yi,k). The numerator scores its
matched floorplan gψ(xi); the denominator sums over all floorplans in the batch. This pulls in the right
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floorplan and pushes away others. Using both directions keeps both encoders balanced.

Lt→f=
1

BK

B∑
i=1

K∑
k=1

−log
exp

(
⟨fφ(xi,k),gψ(yi)⟩

)
B∑
j=1

exp
(
⟨fφ(xi,k),gψ(yj)⟩

)
.

Alignment loss, Lalign(α).Directly shrinks the distance of each matched pair ∥gψ(xi)−fφ(yi,k)∥α2 (often
α=2). With ℓ2-normalized embeddings, this equals increasing cosine similarity.

Lalign(α)=
1

BK

B∑
i=1

K∑
k=1

∥∥∥gψ(yi)−fφ(xi,k)∥∥∥2
2
,

Total loss, Ltotal.We blend the two contrastive loss terms and the alignment term. In practice, we start with
λalign=0 and increase it after a few epochs so the contrastive losses first separate negatives, then alignment
tightens each true pair.

Lcontra=λLf→t+(1−λ)Lt→f +λalignLalign.

Here, λ∈ [0,1] and λalign>0 are tunable hyperparameters.

D PATH-PLANNING ALGORITHMS

We now briefly discuss the planning algorithms and their implementation details used in our experiments.

D.1 ASTAR (A*)

AStar is a classical path-planning algorithm that computes the shortest path on a grid maze given start and
goal locations. A* has been used in robotics and game development for navigation tasks. To compute
the shortest path, A* maintains two lists: an open list of nodes O to be evaluated and a closed list of
nodes C already evaluated. At each step, among the open listO, A* selects the node with the lowest cost
f(n)=g(n)+h(n), where g(n) is the cost from the start node to node n, and h(n) is a heuristic estimate
from n to the goal. Once a node is selected, it is moved to the closed list, and its neighbors are evaluated
(expanded and added to the open list if they are not already in the closed list). The process continues until
the goal node is reached or the open list is empty (goal not reachable). The heuristic h(n) is typically
chosen to be admissible, meaning it never overestimates the true cost to reach the goal. Typically the
Euclidean, Manhattan distance or Octile distance is chosen as the heuristic h(n). A* is complete and
optimal, meaning it is guaranteed to find the shortest path if one exists and the heuristic is admissible. In
our problem ,we recast A* as a forward operatorA(.) that takes in a floorplan x, start postion and an end
position, and outputs the trajectory between the start and goal locations, trajectory=A(x,start,end). This
emulates a human/robot navigation model where the agent always takes the shortest path between two
locations. Because A* relies on node selection of minimum cost and discrete expansions, it is inherently
non-differentiable and hence cannot be used in gradient-based optimization.

D.2 NEURAL ASTAR (NA*)

To make the A* search differentiable, Neural A* (NA*) Yonetani et al. (2021) was proposed. NA* first
encodes the problem instance (floorplan, start, goal) using a convolutional neural network to extract a
guidance map. This guidance map learns to effectively highlight regions of the floorplan that are likely
to be part of the optimal path. Then an iteratively differentiable search mechanism is employed on the
guidance map to compute the search histories. NA* redesigns nodes in the open and closed lists O, C
as matrices and replaces the argmin operation with a softmin operation for the backward pass. Along
with some clever node expansions and updates, the search process becomes differentiable. Once the goal
is reached, a backtracking step is performed to extract the optimal path from the search histories. It is
important to note that the end-to-end planning of NA* is still non-differentiable because of the backtracking
step. So the optimization can be carried only until the “histories” step in the NA* algorithm. Finally,
note that the only “learnable” component in NA* is the convolutional neural network that generates the
guidance map and not the differentiable search process itself. Recall that as shown in Fig 1 (Right), a small
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hole opening in a wall can cause a large change in the trajectory generated by A* as the path can now go
through the wall instead of going around it. This behavior would make the histories very sensitive to small
changes in the environment, which would make gradient-based optimization unstable.

D.3 TRANSPATH

Transpath Kirilenko et al. (2023) is another differentiable path-planning algorithm that is proposed to
accelerate the path-planning. By leveraging the instance-dependent structure (for example, floorplan, start,
stop), Transpath learns a heuristic function using a transformer architecture Vaswani et al. (2017) to guide
the search process. A path probability map (PPM) is generated from the transformer that highlights regions
of the floorplan that are likely to be part of the optimal path. This PPM is then accompanied by either a
focal search or a greedy search that generates the final trajectory. Hence, similar to NA*, Transpath is also
not fully differentiable due to the non-differentiable nature of this search process. But we find that the PPM
generated from the transformer is a good approximation of the trajectory and can be used as a proxy for the
trajectory in gradient-based optimization. In all our experiments, we refer to the PPM generated from the
transformer as the output of Transpath to maintain differentiability. We use the official implementation of
Transpath from Kirilenko et al. (2023) and use their checkpoints for evaluation.

D.4 DIPPER

More recently, DiPPeR Liu et al. (2024) was proposed as a diffusion-based path-planning algorithm.
DiPPeR formulates path planning as a conditional generation problem where the goal is to generate
a trajectory given a floorplan, start and goal locations. DiPPeR uses a U-Net architecture similar to
DDPM Ho et al. (2020) to model the diffusion process directly on the trajectory space instead of the
image pixel space. The U-Net takes as input a noisy trajectory xt ∈RL×2, floorplan ∈RH×W , start
∈RH×W and goal ∈RH×W , and time step t and outputs the denoised trajectory. DiPPeR is trained
using a standard denoising loss using A* generated trajectories as ground truth. At inference, DiPPeR
starts from a random noisy trajectory and iteratively denoises it to generate a valid trajectory. Because the
model has to learn ”intersections” implicitly, DiPPeR sometimes struggles with complex environments in
producing intersecting trajectories that are not valid. To see this, observe the last column in Fig 9 where the
DiPPeR is run over 5 different seeds. While the first two rows show non-intersecting paths, the remaining
bottom three have small intersections, which would not happen for traditional planners. Although DiPPeR
is differentiable end-to-end, the denoising process is computationally expensive as it requires multiple
forward passes through the U-Net to get one gradient step. Accelerated sampling methods such as DDIM
Song et al. (2020a) can be used to reduce the number of forward passes, and we use 50 DDIM steps in
our experiments. This explicit intersection-unawareness makes DiPPeR less suitable as a proxy forward
operator in our setting.

D.5 COMPARISON OF PLANNERS

We compare the behavior of A*, NA*, TransPath, and DiPPeR from the same start and end on multiple
floorplans to analyze their performance. We note that all the planners are able to plan paths well in
these binary (black walls and free spaces). Also, as mentioned in D.1, only the history of Neural A* is
differentiable.
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Figure 9: Comparison of DiPPeR across seeds.
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Figure 10: Comparison of various path planners.

24


	Introduction
	Preliminaries
	Method
	Problem Formulation
	Guidance through Contrastive Learning
	Improving Diffusion Inference

	Experiments and Evaluation
	Results
	Ablations

	Related Work
	Follow-On Work and Conclusion
	Reproducibility Statement
	Likelihood under InfoNCE objective
	Additional Qualitative Results
	CoGuide Implementation Details
	Diffusion Model
	Supervised Contrastive Learning
	Loss function descriptions

	Path-planning algorithms
	AStar (A*)
	Neural AStar (NA*)
	Transpath
	DiPPeR
	Comparison of Planners


